Minggu, 05 November 2017

Tugas Terstruktur No.5 dan 6


1.Jelaskan mengapa reaksi bersaing antara subtitusi dan eliminasi itu bisa terjadi?
 
PERSAINGAN SUBSTITUSI DAN ELIMINASI

Sebuah ion hidroksida atau alkoksialkida dapat bereksis sebagai suatu nukleoful dalam suatu reaksi eliminasi . tipe reaksi mana yang sebenarnya terjadi bergantung pada sejumlah faktor, seperti struktur alkil halida,, kuat basa macam temperatur dan pelarut
ditinjau reaksi antara alkil halida dengan kalium hidroksida yang dilarutkan dalam metil alkohol. Nukleofilnya adalah ion hidroksida, OH-, yaitu nukleofil kuat dan sekaligus adalah basa kuat. Pelarut alkohol kurang polar jika dibandingkan dengan air. Keadaan-keadaan ini menguntungkan proses-proses SN2 dan E2 jika dibandingkan dengan SN1 dan E1. Misalnya, gugus alkil pada alkil halida adalah primer, yaitu 1-bromobutana. Kedua proses dapat terjadi.

 
Hasilnya adalah campuran 1-butanol dan 1-butena. Reaksi SN2 cenderung terjadi jika digunakan pelarut yang lebih polar (air), konsentrasi basa yang sedang, dan suhu sedang. Reaksi E2, cenderung terjadi jika digunakan pelarut yang kurang polar, konsentrasi basa yang tinggi, dan suhu tinggi. Seandainya kita mengganti alkil halida primer menjadi tersier, reaksi substitusi akan terhambat (ingat, urutan reaktivitas untuk reaktivitas SN2 adalah 1o >2o >> 3o). Tetapi, reaksi eliminasi akan cenderung terjadi karena hasilnya adalah alkena yang lebih tersubtitusi. Pada kenyataannya, dengan t-butil bromida, hanya proses E2 yang terjadi. 

Eliminasi adalah jalur alternatif ke substitusi. Berlawanan dengan reaksi adisi dan menghasilkan alkena. Eliminasi dapat berkompetisi dengan substitusi dan menurunkan jumlah produk, khususnya untuk SN1.
Jika alkil halida mempunyai atom hidrogennya pada atom karbon yang bersebelahan dengan karbon pembawa halogen akan bereaksi dengan nukleofil, maka terdapat dua kemungkinan reaksi yang bersaing, yaitu substitusi dan eliminasi.
Halogen X dan hidrogen dari atom karbon yang bersebelahan dieliminasi dan ikatan baru (ikatan ) terbentuk di antara karbon-karbon yang pada mulanya membawa X dan H. Proses eliminasi adalah cara umum yang digunakan dalam pembuatan senyawa-senyawa yang mengandung ikatan rangkap.
Seringkali reaksi substitusi dan eliminasi terjadi secara bersamaan pada pasangan pereaksi nukleofil dan substrat yang sama. Reaksi mana yang dominan, bergantung pada kekuatan nukleofil, struktur substrat, dan kondisi reaksi. Seperti halnya dengan reaksi substitusi, reaksi elimanasi juga mempunyai dua mekanisme, yaitu mekanisme E2 dan E1.
Aturan Zaitsev untuk reaksi Eliminasi
Pada eliminasi HX dari alkil halida, produk alkena yang lebih tersubstitusi adalah produk yang dominan.
Mekanisme E2
Reaksi adalah bimolekul, V tergantung pada konsentrasi RX dan B
V = k[RX][B]
\ Tahap penentu laju reaksi melibatkan konsentrasi B
reactivity:         RI > RBr > RCl > RF
\ Tahap penentu laju reaksi melibatkan pemutusan ikatan R—X
(Reaksi tidak tergantung pada jenis RX apakah 1º, 2º, atau 3º)
Reaksi E2 adalah proses satu tahap. Nukleofil bertindak sebagai basa dan mengambil proton (hidrogen) dari atom karbon yang bersebelahan dengan karbon pembawa gugus pergi. Pada waktu yang bersamaan, gugus pergi terlepas dan ikatan rangkap dua terbentuk.
Konfigurasi yang terbaik untuk reaksi E2 adalah konfigurasi dimana hidrogen yang akan tereliminasi dalam posisi anti dengan gugus pergi. Alasannya ialah bahwa pada posisi tersebut orbital ikatan C-H dan C-X tersusun sempurna yang memudahkan pertumpang tindihan orbital dalam pembentukan ikatan  baru.
Mekanisme E1
Mekanisme E1 mempunyai tahap awal yang sama dengan mekanisme SN1. Tahap lambat atau penentuan ialah tahap ionisasi dari substrat yang menghasilkan ion karbonium.
 
Kemudian, ada dua kemungkinan reaksi untuk ion karbonium. Ion bisa bergabung dengan nukleofil (proses SN1) atau atom karbon bersebelahan dengan ion karbonium melepaskan protonnya, sebagaimana ditunjukkan dengan panah lengkung, dan memebentuk alkena (proses E1).
 
Perbandingan E1 dan E2
·          Basa kuat dibutuhkan untuk E2 tapi tidak untuk E1
·          E2 stereospesifik, E1 tidak
·          E1 menghasilkan orientasi Zaitse
PERSAINGAN SUBSTITUSI DAN ELIMINASI
Ditinjau reaksi antara alkil halida dengan kalium hidroksida yang dilarutkan
dalam metil alkohol. Nukleofilnya adalah ion hidroksida, OH-, yaitu nukleofil kuat
dan sekaligus adalah basa kuat. Pelarut alkohol kurang polar jika dibandingkan
dengan air. Keadaan-keadaan ini menguntungkan proses-proses SN2 dan E2 jika
dibandingkan dengan SN1 dan E1.
            Misalnya, gugus alkil pada alkil halida adalah primer, yaitu 1-bromobutana.
Kedua proses dapat terjadi.
Hasilnya adalah campuran 1-butanol dan 1-butena. Reaksi SN2 cenderung terjadi jika digunakan pelarut yang lebih polar (air), konsentrasi basa yang sedang, dan suhu sedang. Reaksi E2, cenderung terjadi jika digunakan pelarut yang kurang polar, konsentrasi basa yang tinggi, dan suhu tinggi.
Seandainya kita mengganti alkil halida primer menjadi tersier, reaksi substitusi akan terhambat (ingat, urutan reaktivitas untuk reaktivitas SN2 adalah 1o >2o >> 3o). Tetapi, reaksi eliminasi akan cenderung terjadi karena hasilnya adalah alkena yang lebih tersubtitusi. Pada kenyataannya, dengan t-butil bromida, hanya proses E2 yang terjadi.
Jadi, bagaimana kita mengubah butil bromida tersier menjadi alkoholnya? Kita tidak menggunakan ion hidroksida, melainkan air. Air merupakan basa yang lebih lemah daripada ion hidroksida, sehingga reaksi E2 ditekan. Air juga merupakan pelarut polar, yang menguntungkan mekanisme ionisasi. Dalam hal ini, E1 tidak dapat dihindari sebab persaingan antara E1 dan SN1 cukup berat. Hasil utama adalah hasil subtitusi (80%), tetapi eliminasi masih terjadi (20%).
 Ringkasannya, halida tersier bereaksi dengan basa kuat dalam pelarut nonpolar memberikan eliminasi (E2), bukan subtitusi. Dengan basa lemah dan nukleofil lemah, dan dalam pelarut polar, halida tersier memberikan hasil utama subtitusi (SN1), tetapi sedikit eliminasi (E1) juga terjadi. Halida primer bereaksi hanya melalui mekanisme-mekanisme SN2 dan E2, karena mereka tidak terionisasi menjadi ion karbonium. Halida sekunder menempati kedudukan pertengahan, dan mekanisme yang terjadi sangat dipengaruhi oleh keadaan reaksi.
CONTOH-CONTOH REAKSI SUBSTITUSI NUKLEOFILIK DAN ELIMINASI
Nukleofil dapat digolongkan menurut jenis atom yang membentuk ikatan kovalen. Nukleofil yang umum adalah nukleofil oksigen, nitrogen, belerang, halogen, atau karbon. Berikut ini kita akan melihat beberapa contoh reaksi yang melibatkan reaksi nukleofil-nukleofil tersebut dengan alkil halida.
 




2.  Suatu alkohol dapat diubah menjadi eter atau sebaliknya.  Jelaskan mengapa sifat kedua senyawa tersebut berbeda kontras dan berikan contoh-contoh nya! 




Alkohol dan eter disebut pasangan isomer fungsi , karena kedua senyawa tersebut memiliki rumus molekul sama tetapi gugus fungsinya berbeda . Karena gugus fungsi alkohol dan eter berbeda maka sifat-sifat alkohol dan eter berbeda sekali . Perbedaan alcohol dengan eter sebagai berikut :
No Alkohol Eter
1 Zat cair jernih ,mudah larut dalam air . Zat cair jernih , sukar larut dalam air .
2 Titik didih alcohol lebih tinggi
( bila Mr senyawanya sama ) Titik didih eter lebih rendah
( bila Mr senyawanya sama )
3 Akohol bereaksi dengan logam aktif ( Na atau K ) membebaskan gas H2 Eter tidak bereaksi dengan logam aktif ( Na atau K )
4 Akohol bereaksi dengan PCl5 membebaskan uap HCl Eter bereaksi dengan PCl5 tetapi tidak membebaskan uap HCl

Untuk lebih jelasnya pemahaman kita tentang alkohol dan eter marilah kita pelajari kedua senyawa tersebut .

A . ALKOHOL
1. Macam Senyawa Alkohol :
Berdasarkan banyaknya gugus ─ OH senyawa alkohol dikelompokkan menjadi 2 :
a. Monoalkohol yaitu jika senyawa alokohol tersebut hanya terdapat satu gugus
─ OH .
Contoh : Metanol ( CH3─ OH )
Etanol ( C2H5─ OH )
Propanol (C3H7─ OH )
b. Polialkohol yaitu jika senyawa alokohol tersebut terdapat gugus ─ OH jumlahnya lebih dari satu .
Contoh : 1. Glikol CH2─ OH Glikol merupakan cairan digunakan untuk
│ anti beku pada air radiator mobil .
CH2─ OH

2. Gliserol
CH2─ OH

CH─ OH

CH2─ OH
Gliserol banyak manfaatnya dalam hidup kita sehari-hari misalnya digunakan untuk bahan pembuatan pasta gigi sehingga berasa manis, untuk sintesis lemak atau minyak dan untuk bahan peledak ( TNG = Trinitrogliserol ) dan lain-lain .
Berdasarkan letaknya gugus ─ OH alkohol monovalen dibedakan menjadi 3 yaitu :
a. alkohol primer , yaitu alkohol dimana letaknya gugus ─ OH pada atom karbon primer .
Contoh : 1- propanol = CH3─ CH2─CH2─ OH
etanol = CH3─ CH2─ OH

b. alkohol sekunder , yaitu alkohol dimana letaknya gugus ─ OH pada atom karbon sekunder .
Contoh : 2- propanol = CH3─ CH─CH3

OH
2-butanol = CH3─ CH─CH2─CH3

OH
c. alkohol tersier , yaitu alkohol dimana letaknya gugus ─ OH pada atom karbon tersier .


Contoh :
CH3

a. 2-metil-2-butanol = CH3─ C ─CH2─CH3

OH

CH3

b. 2-metil-2-propanol = CH3─ C ─CH3

OH
2. Tatanama Alkohol .
Aturan memberi nama senyawa alkohol dapat mengikuti cara IUPAC atau TRIVIAL sebagai berikut :

Struktur Senyawa Nama IUPAC caranya :
( akhiran a pada nama alkananya diganti ol ) Nama TRIVIAL caranya :
( nama alkilnya + kata alkohol )

1. CH3─ OH

Metanol
Metil alkohol

2. CH3─ CH2─ OH
Etanol
Etil alkohol

3. CH3─ CH2 ─CH2─ OH

1- propanol
Propil alkohol

4. CH3─ CH ─CH3

OH

2-propanol

Sekunder propil alkohol

7 komentar:

  1. Sedangkan eter mempunyai rumus umum R-O-R’ dengan R dan R’ dapat merupakan gugus alkil yang sama. Bila gugus alkilnya sama disebut sebagai eter simetris dan jika tidak sama disebut dengan eter majemuk. Eter berisomer gugus fungsi dengan alcohol, sebab rumus kimia eter sama dengan alkohol.Contoh senyawa eter yang paling umum adalah pelarut dan anestetikdietil eter (etoksietana, CH -CH -O-CH -CH ). Eter sangat umum ditemukan dalam kimia organik dan biokimia, karena gugus ini merupakan gugus penghubung pada senyawa karbohidrat dan lignin.
    Jenis eter:
    Eter tunggal : eter dengan gugus alkil sama
    Eter majemuk : eter dengan gugus alkil berbeda
    Sintesis senyawa eter
    a. Umumnya eter dibuat dari dehidrasi alkohol. Dietil eter dapat dibuat melalui pemanasan etanol dengan asam sulfat pekat pada suhu sekitar 140°C hingga reaksi dehidrasi sempurna. Pembuatan eter dari alcohol
    CH CH OH + HOCH CH ⎯ → CH CH –O–CH CH + H O
    b. Reaksi antara Natrium Alkanolat dengan alkilhalida (sintesis Williamson)
    Contoh :
    C2H5OH + H2SO4 → C2H5SO3OH + H2O (tahap 1)
    C2H5SO3OH + C2H5OH → C2H5OC2H5 + H2SO4 (tahap 2)
    Kegunaan eter
    1. Eter dalam laboratorium digunakan sebagai pelarut yang baik untuk senyawa kovalen dan sedikit larut dalam air.
    2. Dalam bidang kesehatan, eter banyak dgunakan untuk obat pembius atau anestetik

    BalasHapus
  2. Saya akan mencoba menambahkan jawaban dari soal nomor 1, Reaksi Substitusi
    Ketika atom C pada alkil berikatan dengan gugus halogen yang sangat elektronegatif, ikatan yang terjadi bersifat polar. Elektron yang dipakai bersama lebih tertarik ke arah halogen dibandingkan atom C sehingga C memiliki muatan parsial positif.
    Reaksi eliminasi alkil halida dapat terjadi jika direaksikan dengan suatu basa kuat. Akibatnya adalah molekul alkil halida kehilangan satu atom H dan halidanya, namun tidak digantikan oleh gugus penyerang. Oleh karena yang dibuang adalah H dan X(halida), reaksi eliminasi halida sering juga disebut reaksi dehidrohalogenasi (reaksi penghilangan hidrogen dan halogen).

    Produk eliminasi alkil halida oleh basa kuat adalah alkena.

    Contoh :
    CH3 – CH – CH – CH3 + NaOH ==> CH3 – CH = CH – CH3 + H2O + NaBr

    BalasHapus
  3. Saya akan sedikit menambahkan jawaban nomor 1:
    Reaksi Bersaingan : Metil halida dan alkil halida primer cenderung menghasilkan produk substitusi, bukan produk eliminasi. Pada kondisi yang setara , alkil halida tersier terutama mengasilkan produk Eliminiasi dan bukan produk substitusi. Alkil halida sekunder bersifat diantaranya; perbandingan produk substitusi dan produk eliminasi sangat bergantung pada kondisi eksperimen.

    BalasHapus
  4. Saya akan menambahkan sedikit soal no 2. isomeran
    Alkohol dengan rumus umum R–OH dan eter dengan rumus umum R–O–R′ mempunyai keisomeran fungsi.
    Contoh:
    C3H7 –OH dengan CH3– O – C2H5
    1–propanol metoksi etana
    (propil alkohol) (etil–metil eter)
    Kedua senyawa tersebut mempunyai rumus molekul sama, yaitu C3H8O sedangkan gugus fungsinya berbeda. Jadi, alkohol dan eter mempunyai keisomeran fungsi
    Sifat-sifat
    1) Eter mudah menguap, mudah terbakar, dan beracun.
    2) Bereaksi dengan HBr atau HI.
    3) Eter tidak membentuk ikatan hidrogen di antara molekul-molekulnya,sehingga titik didihnya lebih rendah jika dibandingkan dengan titik didih alkohol yang massa molekul relatifnya sama. Titik didih
    eter sebanding dengan titik didih alkana
    e. Pembuatan
    Eter dapat dibuat dengan jalan mereaksikan alkohol primer dengan
    asam sulfat pada suhu 140 °C.
    2 CH3–CH2–OH ⎯⎯→ CH3–CH2–O–CH2–CH3 + H2O

    BalasHapus
  5. saya ingin menambahkan jawaban pertanyaan nomor 1 di atas,Kestabilan (ketidakreaktifan) sikloalkana pada mulanya dijelaskan dengan “Teori Regangan Baeyer” (Baeyer’s strain theory). Pada teori ini dikatakan bahwa senyawa siklik sama seperti halnya sikloalkana membentuk cincin datar. Apabila sudut-sudut ikatan dalam senyawa siklik menyimpang dari sudut ikatan tetrahedral (109,50) maka molekulnya mengalami regangan. Semakin besar penyimpangannya terhadap sudut ikatan tetrahedral maka molekulnya makin regang akibatnya molekul tersebut semakin reaktif. Pada sikloheksana juga dijumpai isomer-isomer cis-tans, yang bila digambarkan dengan konformasi kursi, disini ada dua posisi yang dapat di tempati subtituen, yang pertama substituen dapat berposisi aksial dan yang kedua substituen dapat berposisi ekuatorial. Sifat-sifat fisika dan kimia sikloalkana hampir mirip sifat kimia dan fisika dengan alkana, yaitu nonpolar, titik didih dan titik leburnya sebanding dengan berat molekulnya, dan bersifat inert (lambat bereaksi dengan senyawa lain). Dalam hal ini dua gugus yang di substitusikan pada suatu cincin sikloheksana dapat bersifat cis ataupun trans. Cis1,3 lebih stabil dari pada sturktur trans-1,3 karena kedua substituen dalam cis-1,3 dapat berposisi ekuatorial. Sedangkan trans 1,3 satu gugus terpaksa berposisi aksial. Pada kasus inikestabilan suatu isomer itu tergantung pada posisi subtituennya. Senyawa yang memiliki substituen berposisi ekuatorial itu memilki tolakan sterik yang lebih kecil di bandingkan senyawa yang substituennya berposisi aksial, akibatnya cis 1,3 itu lebih stabil dari pada trans 1,3.

    BalasHapus
  6. Gugus fungsi adalah bagian yang paling reaktif dari suatu senyawa, sehingga gugus fungsi dapat menjadi ciri dari suatu senyawa. Alkohol dan eter memiliki rumus molekul yang sama, yaitu CnH2n+2O. Yang membedakan alkohol dengan eter adalah gugus fungsi yang dimiliki. Gugus fungsi alkohol adalah hidroksi, -OH. Gugus fungsi eter adalah alkoksi, -OR.

    Bila diperhatikan dalam rumus struktur alkohol dan eter akan ditemukan R, R adalah lambang rantai karbon (alkil), R dalam alkohol dan eter tidak dapat diganti dengan H.

    BalasHapus
  7. Gugus fungsi adalah bagian yang paling reaktif dari suatu senyawa, sehingga gugus fungsi dapat menjadi ciri dari suatu senyawa. Alkohol dan eter memiliki rumus molekul yang sama, yaitu CnH2n+2O. Yang membedakan alkohol dengan eter adalah gugus fungsi yang dimiliki. Gugus fungsi alkohol adalah hidroksi, -OH. Gugus fungsi eter adalah alkoksi, -OR.

    Bila diperhatikan dalam rumus struktur alkohol dan eter akan ditemukan R, R adalah lambang rantai karbon (alkil), R dalam alkohol dan eter tidak dapat diganti dengan H.

    BalasHapus