Minggu, 20 Agustus 2017

orbital dan peranannya dalam ikatan konvalen




    Prinsip Ketaktentuan dan Sifat Gelombang dari Elektron

2.2.1  Sifat Gelombang dari Elektron
Seperti telah dikemukakan dalam Bab I, radiasi cahaya dapat dianggap sebagai arus foton atau sebagai gerak gelombang. Berdasarkan pendapat ini, maka pada tahun 1923 de Broglie mengemukakan bahwa dualisme yang sama terdapat pula dalam hal elektron. Menurut teori relativitas dari Einstein, energi suatu partikel dinyatakan sebagai:
E = mc2              (2-1)
m ialah massa partikel dan c2 ialah kecepatan cahaya. Dengan menggunakan hubungan E = hv, didapat mc2 = hv = hc/λ, sehingga untuk foton:
λ = h/mc = h/p   (2-2)
p ialah momentum. De Broglie kemudian mengemukakan bahwa sifat gelombang-partikel dari radiasi dapat diterapkan terhadap elektron, karena elektron hampir sekecil foton. Untuk elektron berlaku:
λ = h/mv = h/p   (2-3)
v ialah kecepatan elektron. Panjang gelombang dari partikel yang dihitung dengan jalan ini disebut panjang gelombang de Broglie. Sifat gelombang dari materi seperti yang dikemukakan oleh de Broglie kemudian dibenarkan oleh Davidson dan Germer dalam tahun 1928, yang mendapatkan pola difraksi dari elektron dengan menjatuhkan sinar pada suatu bidang dari kristal nikel.
Dengan adanya gerak gelombang dari elektron, maka diperlukan suatu teori kuantum yang baru, yang selain dapat menerangkan gerak elektron dalam atom dan menghitung energi yang mungkin, juga dapat memperhitungkan efek difraksi.
2.2.2. Prinsip Ketaktentuan Heisenberg
Dengan adanya teori gelombang dari elektron, maka kedudukan elektron sekeliling inti tak tertentu. Hal ini tercakup dalam Prinsip Ketaktentuan Heisenberg. Dalam tahun 1927 Heisenberg menunjukkan, bahwa nilai sepanjang pengamatan khas tak dapat ditentukan secara simultan dengan ketelitian tinggi. Contohnya adalah pasangan momentum dan kedudukan, dan pasangan energi dan waktu. Batas dalam ketelitian pengukuran fisik tertentu dinyatakan oleh hubungan:
∆q . ∆p > ħ/2     (2-4)
∆E . ∆t > ħ/2      (2-5)
ħ = h/2π; ∆q, ∆p, ∆E, ∆t ketaktentuan adalah berturut-turut dari kedudukan, momentum, energi dan waktu. Karena nilai ħ kecil, maka ketaktentuan ini tak dapat diamati untuk benda besar, tetapi sangat berarti bagi elektron, atom, dan molekul. Jadi ketaktentuan dari kedudukan elektron akan membawa serta ketaktentuan dalam momentum, sesuai dengan persamaan (2-4). Kedudukan dan momentum dari elektron memberikan informasi mengenai kebolehjadian menemukan elektron di sekeliling inti.
Keterbatasan dalam pengukuran tingkat energi elektron dalam atom dapat ditunjukkan sebagai berikut. Andaikan atom tereksitasi mengemisi radiasi elektromagnetik dan berpindah ke tingkat yang lebih stabil, maka atom-atom ini berumur panjang dan garis spektrumnya tajam. Bila atom tereksitasi berumur pendek, maka radiasi elektromagnetik mencakup daerah yang lebar dan garis kurang tajam. Nilai ketaktentuan ∆t lebih kecil dan ∆E besar karena perhubungan dengan ∆v lewat persamaan ∆E = h/∆v.
2.2.3. Sifat Gelombang
Konsep kebolehjadian dapat diterapkan pada pola difraksi elektron. cincin-cincin difraksi adalah daerah dengan kebolehjadian yang tinggi. Rapat elektron berbanding lurus dengan kuadrat faktor amplitudo yang didapat dari persamaan gelombang. Sifat khas gerak gelombang adalah kemampuannya untuk meneruskan energi dari satu titik ke titik lain tanpa perpindahan permanen dari mediumnya. Gelombang ini disebut gelombang progresif (Gb. 2.1).
Suatu persamaan gelombang dinyatakan sebagai berikut:
2/∂x2 = 1/c22ϕ/∂r2       (2-6)
dimana ϕ = a sin 2π (x/λ – vt), v adalah frekuensi, a adalah nilai maksimum dari amplitudo, c adalah kecepatan perambatan. Persamaan (2-6) adalah linier, maka dengan Prinsip Superposisi dua persamaan dengan ϕ1 dan ϕ2 dapat dikombinasi linier. Untuk gelombang ϕ1 dan ϕ2:
2ϕ1/∂x2 = 1/c22ϕ2/∂t2 dan ∂2ϕ2/∂x2 = 1/c22ϕ2/∂t2
Kombinasi linier menghasilkan:
2(a1ϕ1 + a2ϕ2)/ ∂x2 = a12ϕ1/∂x2 + a22ϕ2/∂x2
= 1/c2 {a12ϕ1/∂t2 + a22ϕ2/∂t2} = 1/c22(a1ϕ1 + a2ϕ2)/ ∂x2       (2-7).
Prinsip superposisi ini sekarang digunakan untuk vibrasi tali gitar antara dua titik tertentu atau dua titik mati. Untuk gelombang progresif dari kiri ke kanan persamaan gelombangnya:
ϕ1 = a sin 2π (x/λ – vt)   (2-8)
setelah mencapai ujung, gelombang direfleksi dan berjalan kembali dari kanan ke kiri dengan persamaan gelombang:
ϕ2 = a sin 2π (x/λ – vt)   (2-9)
Gerak gelombang total dinyatakan dengan persamaan:
ϕ = ϕ1 + ϕ2 = a sin 2π (x/λ – vt) + a sin 2π (x/λ + vt)     (2-10).
Untuk gelombang tegak atau gelombang stasioner, bila ϕ = 0, maka sin 2π x/λ = 0, yaitu bila:
2πx/λ = nπ dan x = nλ/2                        (2-11).
n ialah bilangan bulat (Gb. 2.1).
Gelombang stasioner dapat menggambarkan gerak gelombang dari elektron sekeliling inti dalam atom. Agar terjadi interferensi konstruktif dari gelombang de Broglie dengan elektron dalam lintasan Bohr, maka harus dipenuhi hubungan:
2πr = nλ             (2-12).
Substitusi persamaan (2-3) ke dalam persamaan (2-12) menghasilkan:
Mvr = n h/2π; n = 1, 2, 3, …     (2-13). n ialah bilangan kuantum utama. Hasilnya sama dengan yang diturunkan oleh Bohr.
(Sumber: Noer Mansdsjoeriah Surdia. (1993) Ikatan dan Struktur Molekul. Dikbud. Hal: 25-28).

Teori orbital molekul

Teori orbital molekul (Bahasa Inggris: Molecular orbital tehory), disingkat MO, menggunakan kombinasi linear orbital-orbital atom untuk membentuk orbital-orbital molekul yang menrangkumi seluruh molekul. Semuanya ini seringkali dibagi menjadi orbital ikat, orbital antiikat, dan orbital bukan-ikatan. Orbital molekul hanyalah sebuah orbital Schrödinger yang melibatkan beberapa inti atom. Jika orbital ini merupakan tipe orbital yang elektron-elektronnya memiliki kebolehjadian lebih tinggi berada di antara dua inti daripada di lokasi lainnya, maka orbital ini adalah orbital ikat dan akan cenderung menjaga kedua inti bersama. Jika elektron-elektron cenderung berada di orbital molekul yang berada di lokasi lainnya, maka orbital ini adalah orbital antiikat dan akan melemahkan ikatan. Elektron-elektron yang berada pada orbital bukan-ikatan cenderung berada pada orbital yang paling dalam (hampir sama dengan orbital atom), dan diasosiasikan secara keseluruhan pada satu inti. Elektron-elektron ini tidak menguatkan maupun melemahkan kekuatan ikatan.

[sunting] Perbandingan antara teori ikatan valensi dan teori orbital molekul

Pada beberapa bidang, teori ikatan valensi lebih baik daripada teori orbital molekul. Ketika diaplikasikan pada molekul berelektron dua, H2, teori ikatan valensi, bahkan dengan pendekatan Heitler-London yang paling sederhana, memberikan pendekatan energi ikatan yang lebih dekat dan representasi yang lebih akurat pada tingkah laku elektron ketika ikatan kimia terbentuk dan terputus. Sebaliknya, teori orbital molekul memprediksikan bahwa molekul hidrogen akan berdisosiasi menjadi superposisi linear dari hidrogen atom dan ion hidrogen positif dan negatif. Prediksi ini tidak sesuai dengan gambaran fisik. Hal ini secara sebagian menjelaskan mengapa kurva energi total terhadap jarak antar atom pada metode ikatan valensi berada di atas kurva yang menggunakan metode orbital molekul. Situasi ini terjadi pada semua molekul diatomik homonuklir dan tampak dengan jelas pada F2 ketika energi minimum pada kurva yang menggunakan teori orbital molekul masih lebih tinggi dari energi dua atom F.
Konsep hibridisasi sangatlah berguna dan variabilitas pada ikatan di kebanyakan senyawa organik sangatlah rendah, menyebabkan teori ini masih menjadi bagian yang tak terpisahkan dari kimia organik. Namun, hasil kerja Friedrich Hund, Robert Mulliken, dan Gerhard Herzberg menunjukkan bahwa teori orbital molekul memberikan deskripsi yang lebih tepat pada spektrokopi, ionisasi, dan sifat-sifat magnetik molekul. Kekurangan teori ikatan valensi menjadi lebih jelas pada molekul yang berhipervalensi (contohnya PF5) ketika molekul ini dijelaskan tanpa menggunakan orbital-orbital d yang sangat krusial dalam hibridisasi ikatan yang diajukan oleh Pauling. Logam kompleks dan senyawa yang kurang elektron (seperti diborana) dijelaskan dengan sangat baik oleh teori orbital molekul, walaupun penjelasan yang menggunakan teori ikatan valensi juga telah dibuat.
Pada tahun 1930, dua metode ini saling bersaing sampai disadari bahwa keduanya hanyalah merupakan pendekatan pada teori yang lebih baik. Jika kita mengambil struktur ikatan valensi yang sederhana dan menggabungkan semua struktur kovalen dan ion yang dimungkinkan pada sekelompok orbital atom, kita mendapatkan apa yang disebut sebagai fungsi gelombang interaksi konfigurasi penuh. Jika kita mengambil deskripsi orbital molekul sederhana pada keadaan dasar dan mengkombinasikan fungsi tersebut dengan fungsi-fungsi yang mendeskripsikan keseluruhan kemungkinan keadaan tereksitasi yang menggunakan orbital tak terisi dari sekelompok orbital atom yang sama, kita juga mendapatkan fungsi gelombang interaksi konfigurasi penuh. Terlihatlah bahwa pendekatan orbital molekul yang sederhana terlalu menitikberatkan pada struktur ion, sedangkan pendekatan teori valensi ikatan yang sederhana terlalu sedikit menitikberatkan pada struktur ion. Dapat kita katakan bahwa pendekatan orbital molekul terlalu ter-delokalisasi, sedangkan pendekatan ikatan valensi terlalu ter-lokalisasi.
Sekarang kedua pendekatan tersebut dianggap sebagai saling memenuhi, masing-masing memberikan pandangannya sendiri terhadap masalah-masalah pada ikatan kimia. Perhitungan modern pada kimia kuantum biasanya dimulai dari (namun pada akhirnya menjauh) pendekatan orbital molekul daripada pendekatan ikatan valensi. Ini bukanlah karena pendekatan orbital molekul lebih akurat dari pendekatan teori ikatan valensi, melainkan karena pendekatan orbital molekul lebih memudahkan untuk diubah menjadi perhitungan numeris. Namun program-progam ikatan valensi yang lebih baik juga tersedia.

Ikatan dalam rumus kimia

Bentuk atom-atom dan molekul-molekul yang 3 dimensi sangatlah menyulitkan dalam menggunakan teknik tunggal yang mengindikasikan orbital-orbital dan ikatan-ikatan. Pada rumus molekul, ikatan kimia (orbital yang berikatan) diindikasikan menggunakan beberapa metode yang bebeda tergantung pada tipe diskusi. Kadang-kadang kesemuaannya dihiraukan. Sebagai contoh, pada kimia organik, kimiawan biasanya hanya peduli pada gugus fungsi molekul. Oleh karena itu, rumus molekul etanol dapat ditulis secara konformasi, 3-dimensi, 2-dimensi penuh (tanpa indikasi arah ikatan 3-dimensi), 2-dimensi yang disingkat (CH3–CH2–OH), memisahkan gugus fungsi dari bagian molekul lainnnya (C2H5OH), atau hanya dengan konstituen atomnya saja (C2H6O). Kadangkala, bahkan kelopak valensi elektron bukan-ikatan (dengan pendekatan arah yang digambarkan secara 2-dimensi) juga ditandai. Beberapa kimiawan juga menandai orbital-orbital atom, sebagai contoh anion etena−4 yang dihipotesiskan (\/C=C/\ −4) mengindikasikan kemungkinan pembentukan ikatan.

Ikatan kuat kimia

Panjang ikat dalam pm
dan
energi ikat dalam kJ/mol.
Panjang ikat dapat dikonversikan menjadi
Å
dengan pembagian dengan 100 (1 Å = 100 pm).
Data diambil dari
[1].
Ikatan
Panjang
(pm)
Energi
(kJ/mol)
H — Hidrogen
H–H
74
436
H–C
109
413
H–N
101
391
H–O
96
366
H–F
92
568
H–Cl
127
432
H–Br
141
366
C — Karbon
C–H
109
413
C–C
154
348
C=C
134
614
C≡C
120
839
C–N
147
308
C–O
143
360
C–F
135
488
C–Cl
177
330
C–Br
194
288
C–I
214
216
C–S
182
272
N — Nitrogen
N–H
101
391
N–C
147
308
N–N
145
170
N≡N
110
945
O — Oksigen
O–H
96
366
O–C
143
360
O–O
148
145
O=O
121
498
F, Cl, Br, I — Halogen
F–H
92
568
F–F
142
158
F–C
135
488
Cl–H
127
432
Cl–C
177
330
Cl–Cl
199
243
Br–H
141
366
Br–C
194
288
Br–Br
228
193
I–H
161
298
I–C
214
216
I–I
267
151
S — Belerang
C–S
182
272
Ikatan-ikatan berikut adalah ikatan intramolekul yang mengikat atom-atom bersama menjadi molekul. Dalam pandangan yang sederhana dan terlokalisasikan, jumlah elektron yang berpartisipasi dalam suatu ikatan biasanya merupakan perkalian dari dua, empat, atau enam. Jumlah yang berangka genap umumnya dijumpai karena elektron akan memiliki keadaan energi yang lebih rendah jika berpasangan. Teori-teori ikatan yang lebih canggih menunjukkan bahwa kekuatan ikatan tidaklah selalu berupa angka bulat dan tergantung pada distribusi elektron pada setiap atom yang terlibat dalam sebuah ikatan. Sebagai contohnya, karbon-karbon dalam senyawa benzena dihubungkan satu sama lain oleh ikatan 1.5 dan dua atom dalam nitrit oksida NO dihubungkan oleh ikatan 2.5. Keberadaan ikatan rangkap empat juga diketahui dengan baik. Jenis-jenis ikatan kuat bergantung pada perbedaan elektronegativitas dan distribusi orbital elektron yang tertarik pada suatu atom yang terlibat dalam ikatan. Semakin besar perbedaan elektronegativitasnya, semakin besar elektron-elektron tersebut tertarik pada atom yang berikat dan semakin bersifat ion pula ikatan tersebut. Semakin kecil perbedaan elektronegativitasnya, semakin bersifat kovalen ikatan tersebut.

ORBITAL HIBRIDA PADA KARBON

Dalam kimia, hibridisasi adalah sebuah konsep bersatunya orbital-orbital atom membentuk orbital hibrid yang baru yang sesuai dengan penjelasan kualitatif sifat ikatan atom. Konsep orbital-orbital yang terhibridisasi sangatlah berguna dalam menjelaskan bentuk orbital molekul dari sebuah molekul. Konsep ini adalah bagian tak terpisahkan dari teori ikatan valensi. Walaupun kadang-kadang diajarkan bersamaan dengan teori VSEPR, teori ikatan valensi dan hibridisasi sebenarnya tidak ada hubungannya sama sekali dengan teori VSEPR

Hibrid sp3

Hibridisasi menjelaskan atom-atom yang berikatan dari sudut pandang sebuah atom. Untuk sebuah karbon yang berkoordinasi secara tetrahedal (seperti metana, CH4), maka karbon haruslah memiliki orbital-orbital yang memiliki simetri yang tepat dengan 4 atom hidrogen. Konfigurasi keadaan dasar karbon adalah 1s2 2s2 2px1 2py1 atau lebih mudah dilihat:
C ↑↓ 1 s ↑↓ 2 s ↑ 2 p x ↑ 2 p y 2 p z {\displaystyle C\quad {\frac {\uparrow \downarrow }{1s}}\;{\frac {\uparrow \downarrow }{2s}}\;{\frac {\uparrow \,}{2p_{x}}}\;{\frac {\uparrow \,}{2p_{y}}}\;{\frac {\,\,}{2p_{z}}}}
(Perhatikan bahwa orbital 1s memiliki energi lebih rendah dari orbital 2s, dan orbital 2s berenergi sedikit lebih rendah dari orbital-orbital 2p)
Teori ikatan valensi memprediksikan, berdasarkan pada keberadaan dua orbital p yang terisi setengah, bahwa C akan membentuk dua ikatan kovalen, yaitu CH2. Namun, metilena adalah molekul yang sangat reaktif (lihat pula: karbena), sehingga teori ikatan valensi saja tidak cukup untuk menjelaskan keberadaan CH4.
Lebih lanjut lagi, orbital-orbital keadaan dasar tidak bisa digunakan untuk berikatan dalam CH4. Walaupun eksitasi elektron 2s ke orbital 2p secara teori mengizinkan empat ikatan dan sesuai dengan teori ikatan valensi (adalah benar untuk O2), hal ini berarti akan ada beberapa ikatan CH4 yang memiliki energi ikat yang berbeda oleh karena perbedaan aras tumpang tindih orbital. Gagasan ini telah dibuktikan salah secara eksperimen, setiap hidrogen pada CH4 dapat dilepaskan dari karbon dengan energi yang sama.
Untuk menjelaskan keberadaan molekul CH4 ini, maka teori hibridisasi digunakan. Langkah awal hibridisasi adalah eksitasi dari satu (atau lebih) elektron:
C ↑↓ 1 s ↑ 2 s ↑ 2 p x ↑ 2 p y ↑ 2 p z {\displaystyle C^{*}\quad {\frac {\uparrow \downarrow }{1s}}\;{\frac {\uparrow \,}{2s}}\;{\frac {\uparrow \,}{2p_{x}}}{\frac {\uparrow \,}{2p_{y}}}{\frac {\uparrow \,}{2p_{z}}}}
Proton yang membentuk inti atom hidrogen akan menarik salah satu elektron valensi karbon. Hal ini menyebabkan eksitasi, memindahkan elektron 2s ke orbital 2p. Hal ini meningkatkan pengaruh inti atom terhadap elektron-elektron valensi dengan meningkatkan potensial inti efektif.
Kombinasi gaya-gaya ini membentuk fungsi-fungsi matematika yang baru yang dikenal sebagai orbital hibrid. Dalam kasus atom karbon yang berikatan dengan empat hidrogen, orbital 2s (orbital inti hampir tidak pernah terlibat dalam ikatan) "bergabung" dengan tiga orbital 2p membentuk hibrid sp3 (dibaca s-p-tiga) menjadi
C ↑↓ 1 s ↑ s p 3 ↑ s p 3 ↑ s p 3 ↑ s p 3 {\displaystyle C^{*}\quad {\frac {\uparrow \downarrow }{1s}}\;{\frac {\uparrow \,}{sp^{3}}}\;{\frac {\uparrow \,}{sp^{3}}}{\frac {\uparrow \,}{sp^{3}}}{\frac {\uparrow \,}{sp^{3}}}}
Pada CH4, empat orbital hibrid sp3 bertumpang tindih dengan orbital 1s hidrogen, menghasilkan empat ikatan sigma. Empat ikatan ini memiliki panjang dan kuat ikat yang sama, sehingga sesuai dengan pengamatan.
Sebuah representasi skematis orbital-orbital hibrid yang tumpang tindih dengan orbital s hirdogensama dengan Bentuk tetrahedal metana
Sebuah pandangan alternatifnya adalah dengan memandang karbon sebagai anion C4−. Dalam kasus ini, semua orbital karbon terisi:
C 4 − ↑↓ 1 s ↑↓ 2 s ↑↓ 2 p x ↑↓ 2 p y ↑↓ 2 p z {\displaystyle C^{4-}\quad {\frac {\uparrow \downarrow }{1s}}\;{\frac {\uparrow \downarrow }{2s}}\;{\frac {\uparrow \downarrow }{2p_{x}}}{\frac {\uparrow \downarrow }{2p_{y}}}{\frac {\uparrow \downarrow }{2p_{z}}}}
Jika kita menrekombinasi orbital-orbital ini dengan orbital-s 4 hidrogen (4 proton, H+) dan mengijinkan pemisahan maksimum antara 4 hidrogen (yakni tetrahedal), maka kita bisa melihat bahwa pada setiap orientasi orbital-orbital p, sebuah hidrogen tunggal akan bertumpang tindih sebesar 25% dengan orbital-s C dan 75% dengan tiga orbital-p C. HaL ini sama dengan persentase relatif antara s dan p dari orbital hibrid sp3 (25% s dan 75% p).
Menurut teori hibridisasi orbital, elektron-elektron valensi metana seharusnya memiliki tingkat energi yang sama, namun spektrum fotoelekronnya [3] menunjukkan bahwa terdapat dua pita, satu pada 12,7 eV (satu pasangan elektron) dan saty pada 23 eV (tiga pasangan elektron). Ketidakkonsistenan ini dapat dijelaskan apabila kita menganggap adanya penggabungan orbital tambahan yang terjadi ketika orbital-orbital sp3 bergabung dengan 4 orbital hidrogen.

Hibrid sp2

Senyawa karbon ataupun molekul lainnya dapat dijelaskan seperti yang dijelaskan pada metana. Misalnya etilena (C2H4) yang memiliki ikatan rangkap dua di antara karbon-karbonnya. Struktur Kekule metilena akan tampak seperti:
https://upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Ethene-2D-flat.png/220px-Ethene-2D-flat.png
Ethene Lewis Structure. Each C bonded to two hydrogens and one double bond between them.
Karbon akan melakukan hibridisasi sp2 karena orbtial-orbital hibrid hanya akan membentuk ikatan sigma dan satu ikatan pi seperti yang disyaratkan untuk ikatan rangkap dua di antara karbon-karbon. Ikatan hidrogen-karbon memiliki panjang dan kuat ikat yang sama. Hal ini sesuai dengan data percobaan.
Dalam hibridisasi sp2, orbital 2s hanya bergabung dengan dua orbital 2p:
C ↑↓ 1 s ↑ s p 2 ↑ s p 2 ↑ s p 2 ↑ p {\displaystyle C^{*}\quad {\frac {\uparrow \downarrow }{1s}}\;{\frac {\uparrow \,}{sp^{2}}}\;{\frac {\uparrow \,}{sp^{2}}}{\frac {\uparrow \,}{sp^{2}}}{\frac {\uparrow \,}{p}}}
membentuk 3 orbital sp2 dengan satu orbital p tersisa. Dalam etilena, dua atom karbon membentuk sebuah ikatan sigma dengan bertumpang tindih dengan dua orbital sp2 karbon lainnya dan setiap karbon membentuk dua ikatan kovalen dengan hidrogen dengan tumpang tindih s-sp2 yang bersudut 120°. Ikatan pi antara atom karbon tegak lurus dengan bidang molekul dan dibentuk oleh tumpang tindih 2p-2p (namun, ikatan pi boleh terjadi maupun tidak).
Jumlah huruf p tidaklah seperlunya terbatas pada bilangan bulat, yakni hibridisasi seperti sp2.5 juga dapat terjadi. Dalam kasus ini, geometri orbital terdistorsi dari yang seharusnya. Sebagai contoh, seperti yang dinyatakan dalam kaidah Bent, sebuah ikatan cenderung untuk memiliki huruf-p yang lebih banyak ketika ditujukan ke substituen yang lebih elektronegatif.

Hibrid sp

Ikatan kimia dalam senyawa seperti alkuna dengan ikatan rangkap tiga dijelaskan dengan hibridisasi sp.
C ↑↓ 1 s ↑ s p ↑ s p ↑ p ↑ p {\displaystyle C^{*}\quad {\frac {\uparrow \downarrow }{1s}}\;{\frac {\uparrow \,}{sp}}\;{\frac {\uparrow \,}{sp}}{\frac {\uparrow \,}{p}}{\frac {\uparrow \,}{p}}}
Dalam model ini, orbital 2s hanya bergabung dengan satu orbital-p, menghasilkan dua orbital sp dan menyisakan dua orbital p. Ikatan kimia dalam asetilena (etuna) terdiri dari tumpang tindih sp-sp antara dua atom karbon membentuk ikatan sigma, dan dua ikatan pi tambahan yang dibentuk oleh tumpang tindih p-p. Setiap karbon juga berikatan dengan hidrogen dengan tumpang tindih s-sp bersudut 180°.

Hibridisasi dan bentuk molekul

Hibridisasi membantuk kita dalam menjelaskan bentuk molekul:
Jenis molekul
Utama kelompok
Logam transisi[4]
AX2
  • Linear (180°)
  • hibridisasi sp
  • E.g., CO2
  • Tekuk (90°)
  • hibridisasi sd
  • E.g., VO2+
AX3
  • Datar trigonal (120°)
  • hibridisasi sp2
  • E.g., BCl3
  • Piramida trigonal (90°)
  • hibridisasi sd2
  • E.g., CrO3
AX4
  • Tetrahedral (109.5°)
  • hibridisasi sp3
  • E.g., CCl4
  • Tetrahedral (109.5°)
  • hibridisasi sd3
  • E.g., MnO4
AX5
-
  • Piramida persegi (73°, 123°)[5]
  • hibridisasi sd4
  • E.g., Ta(CH3)5
AX6
-
  • Prisma trigonal (63.5°, 116.5°)[5]
  • hibridisasi sd5
  • E.g., W(CH3)6
Secara umum, untuk sebuah atom dengan orbital s dan p yang membentuk hibrid hi dengan sudut θ {\displaystyle \theta } , maka berlaku: 1 + λ {\displaystyle \lambda } i λ {\displaystyle \lambda } j cos( θ {\displaystyle \theta } ) = 0. Rasio p/s untuk hibrid i adalah λ {\displaystyle \lambda } i2, dan untuk hibrid j λ {\displaystyle \lambda } j2. Dalam kasus khusus hibrdid dengan atom yang sama, dengan sudut θ {\displaystyle \theta } , persamaan tersebut akan tereduksi menjadi 1 + λ {\displaystyle \lambda } 2 cos( θ {\displaystyle \theta } ) = 0. Sebagai contoh, BH3 memiliki geometri datar trigonal, sudut ikat 120o, dan tiga hibrid yang setara. Maka 1 + λ {\displaystyle \lambda } 2 cos( θ {\displaystyle \theta } ) = 0 menjadi 1 + λ {\displaystyle \lambda } 2 cos(120o) = 0, berlaku juga λ {\displaystyle \lambda } 2 = 2 untuk rasio p/s. Dengan kata lain terdapat hibrid sp2 seperti yang diperkirakan dari daftar di atas.
molekul hipervalen[6] (Resonansi)
Jenis molekul
Utama kelompok
Logam transisi
AX2
-
Linear (180°)
Di silv.svg
AX3
-
Datar trigonal (120°)
Tri copp.svg
AX4
-
Tetrahedral (109.5°)
Tetra nick.svg
Datar persegi (90°)
Tetra plat.svg
AX5
Bipiramida trigonal (90°, 120°)
Bipiramida trigonal,
Piramida persegi[7]
Penta phos.svg
AX6
Oktahedral (90°)
Oktahedral (90°)
Hexa sulf.svg
Hexa moly.svg
AX7
Bipiramida pentagonal (90°, 72°)
Bipiramida pentagonal,
oktahedral dengan sudut tambahan,
Piramida persegi dengan sudut tambahan[8]
Hepta iodi.svg


11 komentar:

  1. Dapatkah anda jelaskan apakah ada aturan khusus mengenai hibridisasi untuk pembentukan ikatan?
    Terima kasih

    BalasHapus
    Balasan
    1. suai dengan aturan hibridisasi yaitu :
      1. Orbital yang bergabung harus mempunyai tingkat energi sama atau hampir sama
      2. Orbital hybrid yang terbentuk sama banyaknya dengan orbital yang bergabung.
      3. Dalam hibridisasi yang bergabung adalah orbital bukan electron

      Hapus
  2. "Bentuk atom-atom dan molekul-molekul yang 3 dimensi sangatlah menyulitkan dalam menggunakan teknik tunggal yang mengindikasikan orbital-orbital dan ikatan-ikatan" mengapa demikian ?

    BalasHapus
    Balasan
    1. maaksudnya jika menggunakan teknik tunggal yang mengindikasikan orbital-orbital dan ikatan-ikatan.bukan atom atom dan molekul molekul yang tiga dimensi yang menyulitkan jika menggunakan teknik tunggal , jika menggunakan teknik lain mungkin tidak akan sulit , karena teknik tunggal
      Pada rumus molekul, ikatan kimia (orbital yang berikatan) diindikasikan menggunakan beberapa metode yang bebeda tergantung pada tipe diskusi. Kadang-kadang kesemuaannya dihiraukan. Sebagai contoh, pada kimia organik, kimiawan biasanya hanya peduli pada gugus fungsi molekul. Oleh karena itu, rumus molekul etanol dapat ditulis secara konformasi, 3-dimensi, 2-dimensi penuh (tanpa indikasi arah ikatan 3-dimensi), 2-dimensi yang disingkat (CH3–CH2–OH), memisahkan gugus fungsi dari bagian molekul lainnnya (C2H5OH), atau hanya dengan konstituen atomnya saja (C2H6O). Kadangkala, bahkan kelopak valensi elektron non-ikatan (dengan pendekatan arah yang digambarkan secara 2-dimensi) juga ditandai. Beberapa kimiawan juga menandai orbital-orbital atom, sebagai contoh anion etena−4 yang dihipotesiskan (\/C=C/\ −4) mengindikasikan kemungkinan pembentukan ikatan.sehingga terjadi ikatan rangkap dua.

      Hapus
  3. Assalamualaikum fania saya ingin bertanya apa maanfat yang dapat di ambil jika kita mengetahui orde ikatan?
    Terimakasih :)

    BalasHapus
    Balasan
    1. Manfaat yang dapat diambil dengan mengetahui orde ikatan antara lain:

      Orde ikatan sebanding dengan ukuran stabilitas termal.
      Orde ikatan sebanding dengan besarnya energi disosiasi ikatan.
      Orde ikatan sebanding dengan kekuatan ikatan.
      Orde ikatan sebanding dengan 1/jarak ikatan
      Orde ikatan sebanding dengan 1/reaktifitas

      Hapus
  4. Teimakasih infonya fania, saya ingin bertanya tolong anda berikan contoh sifat gelombang dalam kehidupan sehari-hari

    BalasHapus
    Balasan
    1. sifat-sifat gelombang
      > dipantulkan (refleksi) , contoh :
      - ketika berteriak di lereng bukit maka suaramua akn di pantukan kembali
      - pemantulan gelombang air kolam oleh dinding kolam
      - pemantulan gelombang bunyi oleh dasar laut
      > dibiasakan (refraksi) , contoh :
      - suara dari daratan di biaskan pada kedalaman air
      - cahaya yang di pancarkan ke langit akan di biaskan
      > dipadukan (interferensi), contoh:
      - bertemuanya dua gelombang fase yang sama mupun fase yang berlawanan.
      > dapat di belokkan/disebarkan ( difraksi).contoh :
      - ketika berteriak di dalam ruangan yang tertutup namun terdapat celah sedikit, gelombang tersebut akan di belokakan atau di sebarkan melelalui celah tersebut
      > diserap oleh getaran (dispolarisasi).

      Hapus
  5. Komentar ini telah dihapus oleh pengarang.

    BalasHapus
  6. Apa yang membuat karbon melakukan sp2? Apakah karbon bisa melakukan hibridasi lain selain sp2,jika ada berikan contoh senyawanya?

    BalasHapus
    Balasan
    1. arbon akan melakukan hibridisasi sp2 karena orbtial-orbital hibrid hanya akan membentuk ikatan sigma dan satu ikatan pi seperti yang disyaratkan untuk ikatan rangkap dua di antara karbon-karbon. Ikatan hidrogen-karbon memiliki panjang dan kuat ikat yang sama. Hal ini sesuai dengan data percobaan.

      bisa, Pembentukan ikatan pada atom karbon dengan nomor atom 6 menjadi hibrida sp3, sp2 dan sp:
      Dua atom karbon sp2 dapat saling membentuk ikatan yang kuat, mereka membentuk ikatan sigma melalui overlap orbital sp2-sp2. Kombinasi ikatan sigma sp2-sp2 dan ikatan pi 2p-2p menghasilkan bentuk ikatan rangkap karbon-karbon. Bentuk bangun ruang dari ikatan atom karbon yang terhibridisasi sp2 adalah trigonal planar.
      c. Hibridisasi sp
      Atom karbon memiliki kemampuan membentuk tiga macam ikatan, yaitu ikatan tunggal, rangkap dua dan rangkap tiga. Di samping dapat berkombinasi dengan dua atau tiga orbital p, hibrida orbital 2s juga dapat berkombinasi dengan satu orbital p.
      Orbital sp memiliki bangun ruang linear dengan sudut ikatan HC- C sebesar 1800 yang telah terverifikasi dari hasil eksperimental. Panjang ikatan hidrogen-karbon sebesar 1.06A dan panjang ikatan karbon-karbon adalah 1.20 A.

      Hapus